A Batch-Mode Regularized Multimetric Active Learning Framework for Classification of Hyperspectral Images
نویسندگان
چکیده
منابع مشابه
RNN Based Batch Mode Active Learning Framework
Active Learning has been applied in many real world classification tasks to reduce the amount of labeled data required for training a classifier. However most of the existing active learning strategies select only a single sample for labeling by the oracle in every iteration. This results in retraining the classifier after each sample is added which is quite computationally expensive. Also many...
متن کاملAn Optimization Based Framework for Dynamic Batch Mode Active Learning
Active learning techniques have gained popularity in reducing human effort to annotate data instances for inducing a classifier. When faced with large quantities of unlabeled data, such algorithms automatically select the salient and representative samples for manual annotation. Batch mode active learning schemes have been recently proposed to select a batch of data instances simultaneously, ra...
متن کاملDiscriminative Batch Mode Active Learning
Active learning sequentially selects unlabeled instances to label with the goal of reducing the effort needed to learn a good classifier. Most previous studies in active learning have focused on selecting one unlabeled instance to label at one time while retraining in each iteration. Recently a few batch mode active learning approaches have been proposed that select a set of most informative un...
متن کاملActive Learning for Hyperspectral Image Classification
Obtaining labeled data for supervised classification of remotely sensed imagery is expensive and time consuming. Further, manual selection of the training set is often subjective and tends to induce redundancy into the supervised classifier, thus considerably slowing the training phase. Active learning (AL) integrates data acquisition with the classifier design by ranking the unlabeled data to ...
متن کاملA Batch Mode Active Learning for Networked Data
We study a novel problem of batch mode active learning for networked data. In this problem, data instances are connected with links and their labels are correlated with each other, and the goal of batch mode active learning is to exploit the link-based dependencies and node-specific content information to actively select a batch of instances to query the user for learning an accurate model to l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Geoscience and Remote Sensing
سال: 2017
ISSN: 0196-2892,1558-0644
DOI: 10.1109/tgrs.2017.2730583